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Abstract. We study two models for the depinning of a two-dimensional interface byfiniteexternal
forces from a three-dimensional potential in the context of spin systems. This type of model is
motivated by an attempt to understand better the pinning of domain walls in magnets and represents a
new direction in the study of the pinning of walls. A simple analytic model is proposed that provides
for a semi-quantitative interpretation of results from Monte Carlo simulations. The optimization of
the depinning field at a finite temperature involves a compromise between the cell boundary width
and the cell pinning strength.

1. Introduction

Within the last twenty years, there has been much work on the physics of interfaces (domain
walls) in the context of the roughening, wetting and depinning transitions [1–5]. These
investigations have focused on the statistical mechanics of a two-dimensional interface in the
presence of external potentials of different forms. In the roughening transition, the ‘pinning
potential’ is uniform in thexy-plane but periodic in thez-direction. In the wetting transition,
the external potential is localized in thez-direction and uniform in thexy-direction. In these
previous studies, most of the interest was focused on the regime of linear response, for which
the external depinning field is small. In this paper we study models such that the external
potential can be periodic in all three directions and focus on the regime in which the depinning
field is no longer small.

These models are motivated by our desire to understand the fundamental physics of
the pinning of domain walls in the Sm(Co,Fe,Cu,Zr)z (2:17) permanent magnets. The
development of 2:17 permanent magnets was the result of intensive research in the late 1960s
and 1970s [6,7]. Those studies suggest that the optimum material consists of a network of small
cells separated by cell boundaries of the order of ten lattice spacings wide that are approximately
of SmCo5 stoichiometry. Lorentz microscopy suggests that the magnetic domain walls are
pinned at the cell boundaries.

The pinning potentials that we have looked at in this paper are localized at the faces
of a periodic array of cubes and at a periodic arrays of planes.Finite-temperatureMonte
Carlo simulations and simple analytic calculations were performed to clarify the depinning
of magnetic domain walls by an external field from the three-dimensional model ‘cell’
structures. We hope that our work will provide a foundation based on which more sophisticated
calculations can be performed. Our simulation was carried out on a 3D Heisenberg model with
a uniaxial anisotropy and with cubic cells under periodic boundary conditions. The anisotropy
constant and/or the exchange inside the cell boundaries is assumed to be smaller than that in
the bulk by a reduction factorr2.
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We found that the temperature dependence of the depinning field is very strong when the
anisotropy constant of the cell boundary is close to that of the bulk. This seems to be the
case for the existing commercial magnets. On the other hand, the temperature dependence is
much weaker when the cell boundary becomes substantially different from that of the bulk.
Thus to optimize the depinning field at a finite temperature, one should design materials with
a slow enough temperature dependence, at the expense of a lower low-temperature switching
field, that the high-temperature depinning field can be maximized. Samples recently made by
Kim [8] and by Liu and co-workers [9–11] exhibit a slower temperature dependence of the
depinning field and are consistent with this picture.

Examination of the spin configuration during reversal suggests a nucleation-type process
with kinks in the magnetic domain wall created at the corners of the cell structures. Motivated
by the past work on the mechanisms of the pinning of interfaces such as the wetting transition
[3,5], we propose an analytic model to explain the essential physics of the nucleation process in
such a case and find alow-temperature dependence of the depinning field given approximately
by

Hc(T )/Hc(0) = 1− c(T /l(1
√
KJ))0.5

for some constantc. This scaling seems to be obeyed quite well when compared with the
simulation results. In real materials there may be an additional temperature dependence,
electronic in origin, which changes the parameters used in the present discussion. We also
found that the dependence of the depinning field on some of the system parameters for models
with 3D cell boundaries differs qualitatively from that derived from models based on pinning
by 2D boundaries. We now explain our results in detail.

2. The model

Our model consists of Heisenberg spins interacting with each other with short-range exchange
and on-site uniaxial anisotropy interactions in a box of sizeL1 × L2 × L3 under periodic
boundary conditions. The energy of interaction between the spins at the positionsR,R′ is

U = 0.5
∑

ij=xyz,RR′
Vij (R−R′)Si(R)Sj (R′)

whereV = Vd + Ve + Va is the sum of: the dipolar energyVdij (R) = g∇i∇j (1/|R|); the
exchange energyVe = −Jδ(R = R′ + a)δij ; and the crystalline anisotropy energy

Va = −2K
∑
i

S2
ix .

Herea denotes the nearest-neighbour distance.g andJ are coupling constants. We have
performed calculations for both cell defects and planar defects. The cell defect structure is
modelled by cell boundaries of thicknessl centred atz = 0 and atx = L1/2, y = L2/2 or
z = L3/2. The spins inside the cell boundaries are assumed to exhibit an anisotropy constant
that is reduced from the bulk value by a factorr2. Lorentz microscopy shows that for the
optimal magnets part of the magnetic domain wall liesparallel to the cell boundaries [17].
This implies anattractivepotential which pins the domain wall inside the cell boundaries with
the result that the anisotropy constant and/or the exchange inside the cell boundaries is smaller
than that in the bulk by a factorr2 < 1. Recently, a two-dimensional analysis of the energy of
different pinning configurations for a model for the 2:17 material was studied by Katter [18].
This model assumes arepulsivecell boundary and thus is not appropriate for the optimum
magnets. We have also performed calculations where the exchange is also reduced at the cell
boundary. The results are similar. Since we do not yet know what the experimental reduction
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factor actually is, to keep the length of the paper down, we shall mostly focus on the case where
onlyK is changed. The planar defect is modelled with defect walls only centred atz = 0 and
at z = L3/2.

Our simulation follows our recent finite-temperature studies of ultra-thin films [15].
This technique reproduces known micromagnetics results and avoids some of the pitfalls
of zero-temperature calculations such as getting stuck in local metastable states. The largest
system that we looked at consists of 128 000 spins. This is about double the size of systems
investigated in previous zero-temperature micromagnetics calculations for the nanocomposite
NdFeB magnets [16]. Because of the long-range nature of the dipolar potential, the present
calculation is more challenging than that with short-range interactions.

Our Monte Carlo (MC) simulation uses the well established Metropolis algorithm [19].
Most micromagnetics calculation solves the Landau–Gilbert equation atzero temperature. The
MC simulation corresponds to solving the master equation. We expect this dynamics to produce
the correct free energy of nucleation and coercive field but a prefactor in the nucleation rate that
may be different from that of a stochastic Landau–Gilbert equation. Our finite-temperature
MC simulation produces results in agreement with theoretical predictions in micromagnetics
in all of the cases that we have investigated [20].

Most of our calculations are performed forL1 = L2 = L3/2 = 20. For the sake of
simplicity we assumed that the spins reside on a simple cubic lattice. At the beginning, at zero
external field, the spins withz 6 0 andz > 0 are assumed to point in oppositex-directions.

Monte Carlo calculations are performed so that an equilibrium configuration is reached.
External fields of different magnitudes along thex-direction are then applied. The mag-
netization is sampled and averaged every 200 MC steps/spin. If the change is larger than the
standard deviation after 4000 MC steps/spin, the simulation is repeated until the magnetization
is finally stabilized. The depinning field is determined by that which causes the onset of spin
reversal. We next discuss the choice of the interaction parameters.

For Sm2Co17, Tc = 1193 K; thus the bare exchangeJ0 ≈ Tc/1.5 = 800 K [12].
The anisotropy constant isK1 = 3.2 × 107 erg cm−3 and the volume per unit cell is
v = 787 Å3 [7]; thus the anisotropy energy per unit cellK0 isK1v = 182 K. The magnetization
is Ms = 12.5 kG/4π ≈ 103 G; thus the effective dipolar coupling isg0 = M2

s v ≈ 5.7 K.
J0/K0 = 4.4,J0/g0 = 140. The pinning cell boundary width is about 40 Å whereas the lattice
constant is about 8 Å. Thus the boundary width is about five times the lattice constant. For
the experimental systems,J is larger thang andK. Thus over short length scales at a low
enough temperature, the spins are aligned. It is possible to describe the system in terms of
block spins with renormalized interactions. This facilitates the simulation of the formation of
domain walls in a system of reasonable size. In this paper, we shall assume that we are dealing
with block spins that each consist ofd3 atomic spins. For block spins ofd3 unit cells, the
anisotropy, exchange and dipolar interactions are scaled approximately asK = K0d

3,J = J0d

andg = g0d
3. If we take a block spin with eight unit cells, thenJ/K ≈ 1, J0/g0 = 35. In

this paper we have performed simulations withK = −5.5 andJ = −10 (J/K ≈ 2) and
J = −20 (J/K ≈ 4). We have carried out calculations withg ranging from 0 to 1 and found
no difference in our results. This is in contrast with the case for Nd–Fe–B magnets where
the dipolar effects can be more important because of the existence of the soft phase in the
‘nanocomposite’.

3. Simulation results

The temperature dependence of the depinning field of our model is shown in figure 1 for
different cell boundary widthsl = 3, 5, 10 and for different reduction factorsr = 0.7, 0.9.
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The top dashed curve is for pinning by 2D planar boundaries. Most of our calculations are
carried out for 20× 20× 40 spins. To minimize finite-size effects, the results for the largestl

that we have examined,l = 10, are carried out for a larger system with 40×40×80 spins. The
simulation result for the switching field is smaller than that for the anisotropy field by one order
of magnitude, which is the same situation as for the experimental systems. This is reasonable
because the pinning potential is controlled by thedifferencebetween the domain wall energies
inside and outside the pinning boundaries, as we discuss in detail in the next section. The
dashed–triple-dotted curve is forr = 0.9 whereas the other curves are forr = 0.7.

Figure 1. The switching fields normalized by the anisotropy fieldHA = 2 K as a function of
temperature normalized byTc ≈ 1.7J . J = 10. The solid, dotted–dashed and dotted curves are
for r = 0.7 and forl = 3, 5 and 10. The dashed–triple-dotted curve is forr = 0.9 andl = 5. The
dashed curve is for a planar defect withl = 3 andr = 0.7.

The temperature dependence is stronger when the anisotropy constant of the cell boundary
is closer to that of the bulk (see the dashed–triple-dotted curve at the bottom forr = 0.9). This
seems to be the case for the existing commercial magnets. On the other hand, the temperature
dependence is much weaker when the cell boundary becomes substantially different from the
bulk. Thus to optimize the depinning field at a finite temperature, one should design materials
with a slow enough temperature dependence, at the expense of a lower low-temperature
switching field, that the high-temperature depinning field can be maximized. Samples recently
made by Kim [8] and by Liu and co-workers [9–11] exhibit a slower temperature dependence of
the depinning field and are consistent with this picture. Most previous theoretical work [13,14]
has focused on the depinning from planar defects at zero temperature. For comparison, we
have also carried out finite-temperature calculations for the depinning from planar defects. The
results are shown by the dashed curve forr = 0.7. The temperature dependence is quite fast.

In figure 2 we plot the low-temperature(T /J = 0.1) depinning field for different
defect configurations and different boundary thicknesses as functions of the square root of
the difference of the domain wall energy

√
1(JK)0.5 at the cell boundaries. The particular

dependence chosen was suggested by our simple analytic model described in the next section.
The fit works reasonably well. When bothJ andK are reduced at the boundary, the switching
field is higher. We found that the depinning field for 2D planar defects is higher than that
for 3D cell defects. The dependence of the switching field on the cell boundary thickness is
illustrated in figure 3. For planar defects, when the defect widthl becomes larger than the
magnetic domain wall widthw0 = √(J/K), the depinning fieldincreasesand approaches a
finitevalue. However, for cell defects, as the cell boundary width becomes larger, the depinning
field decreasesto zero. As the cell boundary width decreases and eventually becomes small
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Figure 2. The switching field normalized by the anisotropy fieldHA = 2 K as a function
of the square root of the normalized pinning energy which is proportional to the square root
of the difference between the domain wall energies inside and outside the pinning boundaries:
V ∝ [(1− r)(JK)0.5]0.5. The solid and dotted curves are forl = 3 and 5. The bottom (top) two
curves are for 3D cell (2D planar) pinning when only the anisotropy is changed. The triangles and
the dotted–dashed curve are forl = 3 when both the anisotropy and the exchange are reduced at
the cell boundary. The curves are least-squares fits to the points.

enough compared with the domain wall width, the depinning field decreases to zero for both
planar pinning and 3D cell pinning. Thus for cell pinning, there is a maximum in the low-
temperature depinning field when the domain wall width is comparable to the cell boundary
width. We next examine the physics of the wall depinning.

Figure 3. The switching field normalized by the anisotropy fieldHA = 2 K as a function of the
boundary width for planar and for 3D cell pinning forT/Tc = 0.35. J = 20. K andg are as
specified in the text. The error inHc/2 K is 0.004.

A slice of the projection of the spin onto thexy-plane for those spins aty = 0 andz > 0
during a reversal process is shown in figure 4. In this picture, the cell boundaries are near
the centre atx = 10 and near the top and bottom of the figure. Initially all spins point to the
right. A magnetic field is applied pointing to the left. Two domain boundaries near the top
and the bottom can be seen. Nearx = 10, these domain walls are curved, protruding a little
into the middle. For example, aty = 7, the magnitudes of thesexy-projections of the spins at
x = 6 tox = 13 are smaller than those outside this region. Similar results can also be seen at
y = 16. This suggests a picture of reversal whereby kinks in the domain wall nucleate near
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Figure 4. Thexy-projection of the spins for a slice of a typical spin configuration for those spins
at y = 0 andz > 0 during a reversal process forl = 3, T/Tc = 0.35, and other parameters as
specified in the text.

the defect cell corners(x = 10) and move outwards. We next describe our attempt to model
this nucleation picture analytically.

4. The analytic model

There has been much work on the physics of interfaces (domain walls) within the last twenty
years in the context of the roughening, wetting and depinning transitions [1–5]. These invest-
igations have focused on the statistical mechanics of a two-dimensional interface in the presence
of external potentials of different forms. In the present case, the domain wall can be considered
to be an interface between the spin-up and spin-down regions. We follow these interface
investigations and model the current system by considering a phenomenological energy of an
interface given by

E =
∫

d2r⊥ σ(∇h)2 + V θ(|r⊥| > l)θ(h > 0)−Hh(r⊥).

Hereh describes the height of the domain wall as a function of its location in thexy-plane (the
r⊥-plane).l is the width of the pinning cell.σ is the ‘surface tension’ of the wall, which is of
the order ofr

√
JK [1, 2]. For example, it can come from the increase in the wall area when

the wall is curved. There is an additional contribution from the dipolar interaction [1] but it is
small in the present case and so is neglected.V is the pinning potential. We focus on a single
corner for the cell boundaries and assume the interaction energy between the domain walls at
different corners to be small. We assume that when the wall moves away from the pinning
cell corner described by the geometrical constraintθ(|r⊥| > l)θ(h > 0), this pinning energy
is lost. The pinning discussed here is different from that due to point hard pins. When the
domain wall width is less than the cell boundary width,V is of the order of the difference in
domain wall energy across the cell boundary1

√
JK. When the domain wall width is larger

thanl, V decreases and approaches zero [14]. The pinning energy is increased when that part
of the interface outside the cell boundary atr⊥ > l is moved up. The depinning occurs through
the creation of a ‘bubble’ inside the cell corners atr = 0. This bubble expands sideways and
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eventually overcomes the nucleation barrier as the external field is increased. We now try to
describe this mathematically.

In the presence of an external field, we expecth to become nonzero with a profile of height
a and widthb localized around the origin. The strain energy∫

d2r (∇h)2

is of the order ofσb2(a/b)2. The energy change is of the order ofE = σa2 + Ep − αHab2

whereα is a constant of the order of unity.Ep is the pinning energy.Ep = 0 whenb < l.
Whenb > l, the pinning term becomes nonzero:Ep ≈ V (b2 − l2). The extremum energy
can be obtained by setting the derivative ofE with respect toa andb to zero. Extremizing
the energyE with respect toa (Ep is not a function ofa), we obtaina0 = αHb2/2σ . The
extremum energyEe isEe = −0.25α2H 2b4/σ +Ep. Before depinning,Ep = 0, the optimum
b is just l, and the optimuma andEe = E0 area0 = αHl2/2σ andE0 = −0.25α2H 2l4/σ ,
respectively. The magnetization change due to the distortion of the domain wall is proportional
to ab2N whereN is the cell density. The low-field susceptibility is given by

χ ∝ ab2/H ∝ l4N/σ.
As b is increased beyondl, Ep becomes positive andEe increases and reaches a maximum
Ec which is obtained by extremizingEe with respect tob; we getbc = (2V σ)0.5/αH and
Ec = 0.5V b2

c − V l2. The barrier1 for depinning is the differenceEc − E0. After simplific-
ation, we obtain1 = V b2

c (x
2 − 1)2/2 wherex = l/bc. Depinning at zero temperature

occurs when1 = 0. We obtainbc = l andHc0 = (2V σ)0.5/αl. For H close to Hc0,
1 = l4α2(H −Hc)2/σ . At finite T , depinning occurs when1/T = c for some constantc of
the order of unity. This implies a finite-temperature switching field given by

Hc(T )/Hc0 = 1− c′(T /V )0.5/l
at low temperatureswhenHc(T ) is close toHc0. The depinning field is replotted in this manner
in figure 5. This scaling seems to be followed quite well in that results for different parameters
seem to fall on the same curve. There are deviations at high temperatures, which is beyond
the limit of validity of the above formula. There is also a small deviation from a complete
square-root temperature dependence which may be due to additional temperature dependence
of the effective coupling constants in the model.

Figure 5. The data of figure 1 replotted with the temperature normalized by the boundary width
l and the pinning potentialV . Hc(0) is the value of the switching field extrapolated to zero
temperature.
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Our results provide suggestions for the design of the optimum finite-temperature magnet.
Larger cell boundary widthl implies a slower temperature dependence but also implies a
smaller zero-temperature switching fieldHc0. Optimum operation at a specific temperature
requires an optimization of the parametersV andl. From the above results, for a given pinning
strengthV , we obtained the optimum boundary width at the operating temperatureTop given
by l0 ∝ (Top/V )0.5 with an optimum depinning fieldH0 ∝ V√(σ/T ).

5. Conclusions

In conclusion, we have discussed simulation and analytic results on the depinning of domain
boundaries from 3D cell defects. The agreement between the analytic and the numerical results
is reasonable. Our results are qualitatively different from those for pinning by 2D defects. As
the cell boundary width is increased, the depinning field approaches zero in the present case,
whereas for 2D defects, they saturate at a finite value. The temperature dependence of the
switching field can change from fast to slow as the pinning potential is increased. This suggests
that for better 2:17 magnets, one needs narrower cell boundaries and a bigger difference in
anisotropies and exchanges between the boundary and the bulk. The optimum magnet at room
temperature possesses an optimuml that is different from that for the optimum magnet at high
temperatures.

Experimentally, the cell size can be changed. This will change the density of the nucleation
centres but to the zeroth order will not change the nucleation barrier. Thus we think that the cell
size is not as crucial a rate-limiting factor as the cell boundary width. Our analytic calculation
can be improved to take into account the finite-temperature fluctuation of the walls in a more
realistic manner. The problem here bears a resemblance to the wetting problem [3, 5]. The
methods developed there may be applicable here.
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